Metamath Proof Explorer


Theorem mulcan2d

Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulcand.1 φA
mulcand.2 φB
mulcand.3 φC
mulcand.4 φC0
Assertion mulcan2d φAC=BCA=B

Proof

Step Hyp Ref Expression
1 mulcand.1 φA
2 mulcand.2 φB
3 mulcand.3 φC
4 mulcand.4 φC0
5 1 3 mulcomd φAC=CA
6 2 3 mulcomd φBC=CB
7 5 6 eqeq12d φAC=BCCA=CB
8 1 2 3 4 mulcand φCA=CBA=B
9 7 8 bitrd φAC=BCA=B