| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mulcand.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							mulcand.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							mulcand.3 | 
							⊢ ( 𝜑  →  𝐶  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							mulcand.4 | 
							⊢ ( 𝜑  →  𝐶  ≠  0 )  | 
						
						
							| 5 | 
							
								
							 | 
							recex | 
							⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ∃ 𝑥  ∈  ℂ ( 𝐶  ·  𝑥 )  =  1 )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℂ ( 𝐶  ·  𝑥 )  =  1 )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  →  ( 𝑥  ·  ( 𝐶  ·  𝐴 ) )  =  ( 𝑥  ·  ( 𝐶  ·  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  𝑥  ∈  ℂ )  | 
						
						
							| 9 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  𝐶  ∈  ℂ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mulcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 𝑥  ·  𝐶 )  =  ( 𝐶  ·  𝑥 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 𝐶  ·  𝑥 )  =  1 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 𝑥  ·  𝐶 )  =  1 )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( ( 𝑥  ·  𝐶 )  ·  𝐴 )  =  ( 1  ·  𝐴 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  𝐴  ∈  ℂ )  | 
						
						
							| 15 | 
							
								8 9 14
							 | 
							mulassd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( ( 𝑥  ·  𝐶 )  ·  𝐴 )  =  ( 𝑥  ·  ( 𝐶  ·  𝐴 ) ) )  | 
						
						
							| 16 | 
							
								14
							 | 
							mullidd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 1  ·  𝐴 )  =  𝐴 )  | 
						
						
							| 17 | 
							
								13 15 16
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 𝑥  ·  ( 𝐶  ·  𝐴 ) )  =  𝐴 )  | 
						
						
							| 18 | 
							
								12
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( ( 𝑥  ·  𝐶 )  ·  𝐵 )  =  ( 1  ·  𝐵 ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  𝐵  ∈  ℂ )  | 
						
						
							| 20 | 
							
								8 9 19
							 | 
							mulassd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( ( 𝑥  ·  𝐶 )  ·  𝐵 )  =  ( 𝑥  ·  ( 𝐶  ·  𝐵 ) ) )  | 
						
						
							| 21 | 
							
								19
							 | 
							mullidd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 1  ·  𝐵 )  =  𝐵 )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( 𝑥  ·  ( 𝐶  ·  𝐵 ) )  =  𝐵 )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							eqeq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( ( 𝑥  ·  ( 𝐶  ·  𝐴 ) )  =  ( 𝑥  ·  ( 𝐶  ·  𝐵 ) )  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 24 | 
							
								7 23
							 | 
							imbitrid | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  ( 𝐶  ·  𝑥 )  =  1 ) )  →  ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  →  𝐴  =  𝐵 ) )  | 
						
						
							| 25 | 
							
								6 24
							 | 
							rexlimddv | 
							⊢ ( 𝜑  →  ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  →  𝐴  =  𝐵 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							impbid1 | 
							⊢ ( 𝜑  →  ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  ↔  𝐴  =  𝐵 ) )  |