| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmirred.i |
|- I = ( Irred ` ZZring ) |
| 2 |
|
zringring |
|- ZZring e. Ring |
| 3 |
|
zring1 |
|- 1 = ( 1r ` ZZring ) |
| 4 |
1 3
|
irredn1 |
|- ( ( ZZring e. Ring /\ A e. I ) -> A =/= 1 ) |
| 5 |
2 4
|
mpan |
|- ( A e. I -> A =/= 1 ) |
| 6 |
5
|
anim2i |
|- ( ( A e. NN /\ A e. I ) -> ( A e. NN /\ A =/= 1 ) ) |
| 7 |
|
eluz2b3 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ A =/= 1 ) ) |
| 8 |
6 7
|
sylibr |
|- ( ( A e. NN /\ A e. I ) -> A e. ( ZZ>= ` 2 ) ) |
| 9 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
| 10 |
9
|
ad2antrl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. ZZ ) |
| 11 |
|
simprr |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y || A ) |
| 12 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
| 13 |
12
|
ad2antrl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y =/= 0 ) |
| 14 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. ZZ ) |
| 16 |
|
dvdsval2 |
|- ( ( y e. ZZ /\ y =/= 0 /\ A e. ZZ ) -> ( y || A <-> ( A / y ) e. ZZ ) ) |
| 17 |
10 13 15 16
|
syl3anc |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y || A <-> ( A / y ) e. ZZ ) ) |
| 18 |
11 17
|
mpbid |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( A / y ) e. ZZ ) |
| 19 |
15
|
zcnd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. CC ) |
| 20 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 21 |
20
|
ad2antrl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. CC ) |
| 22 |
19 21 13
|
divcan2d |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y x. ( A / y ) ) = A ) |
| 23 |
|
simplr |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. I ) |
| 24 |
22 23
|
eqeltrd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y x. ( A / y ) ) e. I ) |
| 25 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 26 |
|
eqid |
|- ( Unit ` ZZring ) = ( Unit ` ZZring ) |
| 27 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
| 28 |
1 25 26 27
|
irredmul |
|- ( ( y e. ZZ /\ ( A / y ) e. ZZ /\ ( y x. ( A / y ) ) e. I ) -> ( y e. ( Unit ` ZZring ) \/ ( A / y ) e. ( Unit ` ZZring ) ) ) |
| 29 |
10 18 24 28
|
syl3anc |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y e. ( Unit ` ZZring ) \/ ( A / y ) e. ( Unit ` ZZring ) ) ) |
| 30 |
|
zringunit |
|- ( y e. ( Unit ` ZZring ) <-> ( y e. ZZ /\ ( abs ` y ) = 1 ) ) |
| 31 |
30
|
baib |
|- ( y e. ZZ -> ( y e. ( Unit ` ZZring ) <-> ( abs ` y ) = 1 ) ) |
| 32 |
10 31
|
syl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y e. ( Unit ` ZZring ) <-> ( abs ` y ) = 1 ) ) |
| 33 |
|
nnnn0 |
|- ( y e. NN -> y e. NN0 ) |
| 34 |
|
nn0re |
|- ( y e. NN0 -> y e. RR ) |
| 35 |
|
nn0ge0 |
|- ( y e. NN0 -> 0 <_ y ) |
| 36 |
34 35
|
absidd |
|- ( y e. NN0 -> ( abs ` y ) = y ) |
| 37 |
33 36
|
syl |
|- ( y e. NN -> ( abs ` y ) = y ) |
| 38 |
37
|
ad2antrl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( abs ` y ) = y ) |
| 39 |
38
|
eqeq1d |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( abs ` y ) = 1 <-> y = 1 ) ) |
| 40 |
32 39
|
bitrd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y e. ( Unit ` ZZring ) <-> y = 1 ) ) |
| 41 |
|
zringunit |
|- ( ( A / y ) e. ( Unit ` ZZring ) <-> ( ( A / y ) e. ZZ /\ ( abs ` ( A / y ) ) = 1 ) ) |
| 42 |
41
|
baib |
|- ( ( A / y ) e. ZZ -> ( ( A / y ) e. ( Unit ` ZZring ) <-> ( abs ` ( A / y ) ) = 1 ) ) |
| 43 |
18 42
|
syl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( A / y ) e. ( Unit ` ZZring ) <-> ( abs ` ( A / y ) ) = 1 ) ) |
| 44 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. RR ) |
| 46 |
|
simprl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. NN ) |
| 47 |
45 46
|
nndivred |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( A / y ) e. RR ) |
| 48 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
| 49 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
| 50 |
48 49
|
syl |
|- ( A e. NN -> 0 <_ A ) |
| 51 |
50
|
ad2antrr |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 0 <_ A ) |
| 52 |
46
|
nnred |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. RR ) |
| 53 |
|
nngt0 |
|- ( y e. NN -> 0 < y ) |
| 54 |
53
|
ad2antrl |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 0 < y ) |
| 55 |
|
divge0 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( y e. RR /\ 0 < y ) ) -> 0 <_ ( A / y ) ) |
| 56 |
45 51 52 54 55
|
syl22anc |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 0 <_ ( A / y ) ) |
| 57 |
47 56
|
absidd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( abs ` ( A / y ) ) = ( A / y ) ) |
| 58 |
57
|
eqeq1d |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( abs ` ( A / y ) ) = 1 <-> ( A / y ) = 1 ) ) |
| 59 |
|
1cnd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 1 e. CC ) |
| 60 |
19 21 59 13
|
divmuld |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( A / y ) = 1 <-> ( y x. 1 ) = A ) ) |
| 61 |
21
|
mulridd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y x. 1 ) = y ) |
| 62 |
61
|
eqeq1d |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( y x. 1 ) = A <-> y = A ) ) |
| 63 |
58 60 62
|
3bitrd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( abs ` ( A / y ) ) = 1 <-> y = A ) ) |
| 64 |
43 63
|
bitrd |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( A / y ) e. ( Unit ` ZZring ) <-> y = A ) ) |
| 65 |
40 64
|
orbi12d |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( y e. ( Unit ` ZZring ) \/ ( A / y ) e. ( Unit ` ZZring ) ) <-> ( y = 1 \/ y = A ) ) ) |
| 66 |
29 65
|
mpbid |
|- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y = 1 \/ y = A ) ) |
| 67 |
66
|
expr |
|- ( ( ( A e. NN /\ A e. I ) /\ y e. NN ) -> ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 68 |
67
|
ralrimiva |
|- ( ( A e. NN /\ A e. I ) -> A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 69 |
|
isprm2 |
|- ( A e. Prime <-> ( A e. ( ZZ>= ` 2 ) /\ A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) ) |
| 70 |
8 68 69
|
sylanbrc |
|- ( ( A e. NN /\ A e. I ) -> A e. Prime ) |
| 71 |
|
prmz |
|- ( A e. Prime -> A e. ZZ ) |
| 72 |
|
1nprm |
|- -. 1 e. Prime |
| 73 |
|
zringunit |
|- ( A e. ( Unit ` ZZring ) <-> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |
| 74 |
|
prmnn |
|- ( A e. Prime -> A e. NN ) |
| 75 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 76 |
75 49
|
absidd |
|- ( A e. NN0 -> ( abs ` A ) = A ) |
| 77 |
74 48 76
|
3syl |
|- ( A e. Prime -> ( abs ` A ) = A ) |
| 78 |
|
id |
|- ( A e. Prime -> A e. Prime ) |
| 79 |
77 78
|
eqeltrd |
|- ( A e. Prime -> ( abs ` A ) e. Prime ) |
| 80 |
|
eleq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) e. Prime <-> 1 e. Prime ) ) |
| 81 |
79 80
|
syl5ibcom |
|- ( A e. Prime -> ( ( abs ` A ) = 1 -> 1 e. Prime ) ) |
| 82 |
81
|
adantld |
|- ( A e. Prime -> ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> 1 e. Prime ) ) |
| 83 |
73 82
|
biimtrid |
|- ( A e. Prime -> ( A e. ( Unit ` ZZring ) -> 1 e. Prime ) ) |
| 84 |
72 83
|
mtoi |
|- ( A e. Prime -> -. A e. ( Unit ` ZZring ) ) |
| 85 |
|
dvdsmul1 |
|- ( ( x e. ZZ /\ y e. ZZ ) -> x || ( x x. y ) ) |
| 86 |
85
|
ad2antlr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x || ( x x. y ) ) |
| 87 |
|
simpr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x x. y ) = A ) |
| 88 |
86 87
|
breqtrd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x || A ) |
| 89 |
|
simplrl |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x e. ZZ ) |
| 90 |
71
|
ad2antrr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A e. ZZ ) |
| 91 |
|
absdvdsb |
|- ( ( x e. ZZ /\ A e. ZZ ) -> ( x || A <-> ( abs ` x ) || A ) ) |
| 92 |
89 90 91
|
syl2anc |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x || A <-> ( abs ` x ) || A ) ) |
| 93 |
88 92
|
mpbid |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) || A ) |
| 94 |
|
breq1 |
|- ( y = ( abs ` x ) -> ( y || A <-> ( abs ` x ) || A ) ) |
| 95 |
|
eqeq1 |
|- ( y = ( abs ` x ) -> ( y = 1 <-> ( abs ` x ) = 1 ) ) |
| 96 |
|
eqeq1 |
|- ( y = ( abs ` x ) -> ( y = A <-> ( abs ` x ) = A ) ) |
| 97 |
95 96
|
orbi12d |
|- ( y = ( abs ` x ) -> ( ( y = 1 \/ y = A ) <-> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) |
| 98 |
94 97
|
imbi12d |
|- ( y = ( abs ` x ) -> ( ( y || A -> ( y = 1 \/ y = A ) ) <-> ( ( abs ` x ) || A -> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) ) |
| 99 |
69
|
simprbi |
|- ( A e. Prime -> A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 101 |
89
|
zcnd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x e. CC ) |
| 102 |
74
|
ad2antrr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A e. NN ) |
| 103 |
102
|
nnne0d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A =/= 0 ) |
| 104 |
|
simplrr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> y e. ZZ ) |
| 105 |
104
|
zcnd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> y e. CC ) |
| 106 |
105
|
mul02d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( 0 x. y ) = 0 ) |
| 107 |
103 87 106
|
3netr4d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x x. y ) =/= ( 0 x. y ) ) |
| 108 |
|
oveq1 |
|- ( x = 0 -> ( x x. y ) = ( 0 x. y ) ) |
| 109 |
108
|
necon3i |
|- ( ( x x. y ) =/= ( 0 x. y ) -> x =/= 0 ) |
| 110 |
107 109
|
syl |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x =/= 0 ) |
| 111 |
101 110
|
absne0d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) =/= 0 ) |
| 112 |
111
|
neneqd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> -. ( abs ` x ) = 0 ) |
| 113 |
|
nn0abscl |
|- ( x e. ZZ -> ( abs ` x ) e. NN0 ) |
| 114 |
89 113
|
syl |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. NN0 ) |
| 115 |
|
elnn0 |
|- ( ( abs ` x ) e. NN0 <-> ( ( abs ` x ) e. NN \/ ( abs ` x ) = 0 ) ) |
| 116 |
114 115
|
sylib |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) e. NN \/ ( abs ` x ) = 0 ) ) |
| 117 |
116
|
ord |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( -. ( abs ` x ) e. NN -> ( abs ` x ) = 0 ) ) |
| 118 |
112 117
|
mt3d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. NN ) |
| 119 |
98 100 118
|
rspcdva |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) || A -> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) |
| 120 |
93 119
|
mpd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) |
| 121 |
|
zringunit |
|- ( x e. ( Unit ` ZZring ) <-> ( x e. ZZ /\ ( abs ` x ) = 1 ) ) |
| 122 |
121
|
baib |
|- ( x e. ZZ -> ( x e. ( Unit ` ZZring ) <-> ( abs ` x ) = 1 ) ) |
| 123 |
89 122
|
syl |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x e. ( Unit ` ZZring ) <-> ( abs ` x ) = 1 ) ) |
| 124 |
104 31
|
syl |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( y e. ( Unit ` ZZring ) <-> ( abs ` y ) = 1 ) ) |
| 125 |
105
|
abscld |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` y ) e. RR ) |
| 126 |
125
|
recnd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` y ) e. CC ) |
| 127 |
|
1cnd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> 1 e. CC ) |
| 128 |
101
|
abscld |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. RR ) |
| 129 |
128
|
recnd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. CC ) |
| 130 |
126 127 129 111
|
mulcand |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( ( abs ` x ) x. ( abs ` y ) ) = ( ( abs ` x ) x. 1 ) <-> ( abs ` y ) = 1 ) ) |
| 131 |
87
|
fveq2d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` ( x x. y ) ) = ( abs ` A ) ) |
| 132 |
101 105
|
absmuld |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
| 133 |
77
|
ad2antrr |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` A ) = A ) |
| 134 |
131 132 133
|
3eqtr3d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) x. ( abs ` y ) ) = A ) |
| 135 |
129
|
mulridd |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) x. 1 ) = ( abs ` x ) ) |
| 136 |
134 135
|
eqeq12d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( ( abs ` x ) x. ( abs ` y ) ) = ( ( abs ` x ) x. 1 ) <-> A = ( abs ` x ) ) ) |
| 137 |
|
eqcom |
|- ( A = ( abs ` x ) <-> ( abs ` x ) = A ) |
| 138 |
136 137
|
bitrdi |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( ( abs ` x ) x. ( abs ` y ) ) = ( ( abs ` x ) x. 1 ) <-> ( abs ` x ) = A ) ) |
| 139 |
124 130 138
|
3bitr2d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( y e. ( Unit ` ZZring ) <-> ( abs ` x ) = A ) ) |
| 140 |
123 139
|
orbi12d |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) <-> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) |
| 141 |
120 140
|
mpbird |
|- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) |
| 142 |
141
|
ex |
|- ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) = A -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) ) |
| 143 |
142
|
ralrimivva |
|- ( A e. Prime -> A. x e. ZZ A. y e. ZZ ( ( x x. y ) = A -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) ) |
| 144 |
25 26 1 27
|
isirred2 |
|- ( A e. I <-> ( A e. ZZ /\ -. A e. ( Unit ` ZZring ) /\ A. x e. ZZ A. y e. ZZ ( ( x x. y ) = A -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) ) ) |
| 145 |
71 84 143 144
|
syl3anbrc |
|- ( A e. Prime -> A e. I ) |
| 146 |
145
|
adantl |
|- ( ( A e. NN /\ A e. Prime ) -> A e. I ) |
| 147 |
70 146
|
impbida |
|- ( A e. NN -> ( A e. I <-> A e. Prime ) ) |