Metamath Proof Explorer


Theorem mt3d

Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995)

Ref Expression
Hypotheses mt3d.1
|- ( ph -> -. ch )
mt3d.2
|- ( ph -> ( -. ps -> ch ) )
Assertion mt3d
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 mt3d.1
 |-  ( ph -> -. ch )
2 mt3d.2
 |-  ( ph -> ( -. ps -> ch ) )
3 2 con1d
 |-  ( ph -> ( -. ch -> ps ) )
4 1 3 mpd
 |-  ( ph -> ps )