Metamath Proof Explorer


Theorem abscld

Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φ A
Assertion abscld φ A

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 abscl A A
3 1 2 syl φ A