Metamath Proof Explorer


Theorem abscl

Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999)

Ref Expression
Assertion abscl A A

Proof

Step Hyp Ref Expression
1 absval A A = A A
2 cjmulrcl A A A
3 cjmulge0 A 0 A A
4 resqrtcl A A 0 A A A A
5 2 3 4 syl2anc A A A
6 1 5 eqeltrd A A