Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
abscl
Next ⟩
abscj
Metamath Proof Explorer
Ascii
Unicode
Theorem
abscl
Description:
Real closure of absolute value.
(Contributed by
NM
, 3-Oct-1999)
Ref
Expression
Assertion
abscl
⊢
A
∈
ℂ
→
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
absval
⊢
A
∈
ℂ
→
A
=
A
⁢
A
‾
2
cjmulrcl
⊢
A
∈
ℂ
→
A
⁢
A
‾
∈
ℝ
3
cjmulge0
⊢
A
∈
ℂ
→
0
≤
A
⁢
A
‾
4
resqrtcl
⊢
A
⁢
A
‾
∈
ℝ
∧
0
≤
A
⁢
A
‾
→
A
⁢
A
‾
∈
ℝ
5
2
3
4
syl2anc
⊢
A
∈
ℂ
→
A
⁢
A
‾
∈
ℝ
6
1
5
eqeltrd
⊢
A
∈
ℂ
→
A
∈
ℝ