Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
2 | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) | |
3 | cjmulge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
4 | resqrtcl | ⊢ ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ ) | |
5 | 2 3 4 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ ) |
6 | 1 5 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |