Metamath Proof Explorer


Theorem abscl

Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999)

Ref Expression
Assertion abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 absval ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
2 cjmulrcl ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ )
3 cjmulge0 ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
4 resqrtcl ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ )
5 2 3 4 syl2anc ( 𝐴 ∈ ℂ → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ )
6 1 5 eqeltrd ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )