Metamath Proof Explorer


Theorem abscj

Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of Gleason p. 133. (Contributed by NM, 28-Apr-2005)

Ref Expression
Assertion abscj ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cjcl ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ )
2 absval ( ( ∗ ‘ 𝐴 ) ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) )
3 1 2 syl ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) )
4 mulcom ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) )
5 1 4 mpdan ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) )
6 cjcj ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 )
7 6 oveq2d ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) )
8 5 7 eqtr4d ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) )
9 8 fveq2d ( 𝐴 ∈ ℂ → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) )
10 3 9 eqtr4d ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
11 absval ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
12 10 11 eqtr4d ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) )