| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resubgval.m |
|- .- = ( -g ` RRfld ) |
| 2 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 3 |
2
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 4 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
| 5 |
3 4
|
ax-mp |
|- RR e. ( SubGrp ` CCfld ) |
| 6 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
| 7 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 8 |
6 7 1
|
subgsub |
|- ( ( RR e. ( SubGrp ` CCfld ) /\ X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) |
| 9 |
5 8
|
mp3an1 |
|- ( ( X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) |