Metamath Proof Explorer


Theorem resubgval

Description: Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis resubgval.m -˙=-fld
Assertion resubgval XYXY=X-˙Y

Proof

Step Hyp Ref Expression
1 resubgval.m -˙=-fld
2 resubdrg SubRingfldfldDivRing
3 2 simpli SubRingfld
4 subrgsubg SubRingfldSubGrpfld
5 3 4 ax-mp SubGrpfld
6 cnfldsub =-fld
7 df-refld fld=fld𝑠
8 6 7 1 subgsub SubGrpfldXYXY=X-˙Y
9 5 8 mp3an1 XYXY=X-˙Y