Metamath Proof Explorer


Theorem cnfldsub

Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion cnfldsub =-fld

Proof

Step Hyp Ref Expression
1 cnfldbas =Basefld
2 cnfldadd +=+fld
3 eqid invgfld=invgfld
4 eqid -fld=-fld
5 1 2 3 4 grpsubval xyx-fldy=x+invgfldy
6 cnfldneg yinvgfldy=y
7 6 adantl xyinvgfldy=y
8 7 oveq2d xyx+invgfldy=x+y
9 negsub xyx+y=xy
10 5 8 9 3eqtrrd xyxy=x-fldy
11 10 mpoeq3ia x,yxy=x,yx-fldy
12 subf :×
13 ffn :×Fn×
14 12 13 ax-mp Fn×
15 fnov Fn×=x,yxy
16 14 15 mpbi =x,yxy
17 cnring fldRing
18 ringgrp fldRingfldGrp
19 17 18 ax-mp fldGrp
20 1 4 grpsubf fldGrp-fld:×
21 ffn -fld:×-fldFn×
22 19 20 21 mp2b -fldFn×
23 fnov -fldFn×-fld=x,yx-fldy
24 22 23 mpbi -fld=x,yx-fldy
25 11 16 24 3eqtr4i =-fld