| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxval.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrxbase.b |  |-  B = ( Base ` H ) | 
						
							| 3 | 1 | rrxval |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 5 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) | 
						
							| 7 | 5 6 | tcphbas |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 8 | 4 7 | eqtr4di |  |-  ( I e. V -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 9 | 2 | a1i |  |-  ( I e. V -> B = ( Base ` H ) ) | 
						
							| 10 |  | refld |  |-  RRfld e. Field | 
						
							| 11 |  | eqid |  |-  ( RRfld freeLMod I ) = ( RRfld freeLMod I ) | 
						
							| 12 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 13 |  | re0g |  |-  0 = ( 0g ` RRfld ) | 
						
							| 14 |  | eqid |  |-  { f e. ( RR ^m I ) | f finSupp 0 } = { f e. ( RR ^m I ) | f finSupp 0 } | 
						
							| 15 | 11 12 13 14 | frlmbas |  |-  ( ( RRfld e. Field /\ I e. V ) -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 16 | 10 15 | mpan |  |-  ( I e. V -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 17 | 8 9 16 | 3eqtr4d |  |-  ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |