| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxval.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrxbase.b |  |-  B = ( Base ` H ) | 
						
							| 3 | 1 | rrxval |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 4 |  | refld |  |-  RRfld e. Field | 
						
							| 5 |  | eqid |  |-  ( RRfld freeLMod I ) = ( RRfld freeLMod I ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) | 
						
							| 7 | 5 6 | frlmpws |  |-  ( ( RRfld e. Field /\ I e. V ) -> ( RRfld freeLMod I ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 8 | 4 7 | mpan |  |-  ( I e. V -> ( RRfld freeLMod I ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 9 |  | fvex |  |-  ( ( subringAlg ` RRfld ) ` RR ) e. _V | 
						
							| 10 |  | rlmval |  |-  ( ringLMod ` RRfld ) = ( ( subringAlg ` RRfld ) ` ( Base ` RRfld ) ) | 
						
							| 11 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 12 | 11 | fveq2i |  |-  ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` ( Base ` RRfld ) ) | 
						
							| 13 | 10 12 | eqtr4i |  |-  ( ringLMod ` RRfld ) = ( ( subringAlg ` RRfld ) ` RR ) | 
						
							| 14 | 13 | oveq1i |  |-  ( ( ringLMod ` RRfld ) ^s I ) = ( ( ( subringAlg ` RRfld ) ` RR ) ^s I ) | 
						
							| 15 | 11 | ressid |  |-  ( RRfld e. Field -> ( RRfld |`s RR ) = RRfld ) | 
						
							| 16 | 4 15 | ax-mp |  |-  ( RRfld |`s RR ) = RRfld | 
						
							| 17 |  | eqidd |  |-  ( T. -> ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` RR ) ) | 
						
							| 18 | 11 | eqimssi |  |-  RR C_ ( Base ` RRfld ) | 
						
							| 19 | 18 | a1i |  |-  ( T. -> RR C_ ( Base ` RRfld ) ) | 
						
							| 20 | 17 19 | srasca |  |-  ( T. -> ( RRfld |`s RR ) = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) ) | 
						
							| 21 | 20 | mptru |  |-  ( RRfld |`s RR ) = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) | 
						
							| 22 | 16 21 | eqtr3i |  |-  RRfld = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) | 
						
							| 23 | 14 22 | pwsval |  |-  ( ( ( ( subringAlg ` RRfld ) ` RR ) e. _V /\ I e. V ) -> ( ( ringLMod ` RRfld ) ^s I ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) | 
						
							| 24 | 9 23 | mpan |  |-  ( I e. V -> ( ( ringLMod ` RRfld ) ^s I ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) | 
						
							| 25 | 24 | eqcomd |  |-  ( I e. V -> ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( ( ringLMod ` RRfld ) ^s I ) ) | 
						
							| 26 | 3 | fveq2d |  |-  ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 27 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 28 | 27 6 | tcphbas |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 29 | 26 2 28 | 3eqtr4g |  |-  ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 30 | 25 29 | oveq12d |  |-  ( I e. V -> ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 31 | 8 30 | eqtr4d |  |-  ( I e. V -> ( RRfld freeLMod I ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) | 
						
							| 33 | 3 32 | eqtrd |  |-  ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |