| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 2 |
1
|
simpri |
|- RRfld e. DivRing |
| 3 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 4 |
|
cncrng |
|- CCfld e. CRing |
| 5 |
1
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 6 |
|
eqid |
|- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
| 7 |
6
|
subrgcrng |
|- ( ( CCfld e. CRing /\ RR e. ( SubRing ` CCfld ) ) -> ( CCfld |`s RR ) e. CRing ) |
| 8 |
4 5 7
|
mp2an |
|- ( CCfld |`s RR ) e. CRing |
| 9 |
3 8
|
eqeltri |
|- RRfld e. CRing |
| 10 |
|
isfld |
|- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
| 11 |
2 9 10
|
mpbir2an |
|- RRfld e. Field |