Metamath Proof Explorer


Theorem subrgcrng

Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypothesis subrgring.1
|- S = ( R |`s A )
Assertion subrgcrng
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. CRing )

Proof

Step Hyp Ref Expression
1 subrgring.1
 |-  S = ( R |`s A )
2 1 subrgring
 |-  ( A e. ( SubRing ` R ) -> S e. Ring )
3 2 adantl
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. Ring )
4 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
5 1 4 mgpress
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) = ( mulGrp ` S ) )
6 4 crngmgp
 |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd )
7 eqid
 |-  ( mulGrp ` S ) = ( mulGrp ` S )
8 7 ringmgp
 |-  ( S e. Ring -> ( mulGrp ` S ) e. Mnd )
9 3 8 syl
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( mulGrp ` S ) e. Mnd )
10 5 9 eqeltrd
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) e. Mnd )
11 eqid
 |-  ( ( mulGrp ` R ) |`s A ) = ( ( mulGrp ` R ) |`s A )
12 11 subcmn
 |-  ( ( ( mulGrp ` R ) e. CMnd /\ ( ( mulGrp ` R ) |`s A ) e. Mnd ) -> ( ( mulGrp ` R ) |`s A ) e. CMnd )
13 6 10 12 syl2an2r
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) e. CMnd )
14 5 13 eqeltrrd
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( mulGrp ` S ) e. CMnd )
15 7 iscrng
 |-  ( S e. CRing <-> ( S e. Ring /\ ( mulGrp ` S ) e. CMnd ) )
16 3 14 15 sylanbrc
 |-  ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. CRing )