Metamath Proof Explorer


Theorem subrgcrng

Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypothesis subrgring.1 𝑆 = ( 𝑅s 𝐴 )
Assertion subrgcrng ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ CRing )

Proof

Step Hyp Ref Expression
1 subrgring.1 𝑆 = ( 𝑅s 𝐴 )
2 1 subrgring ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring )
3 2 adantl ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring )
4 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
5 1 4 mgpress ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) )
6 4 crngmgp ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
7 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
8 7 ringmgp ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd )
9 3 8 syl ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd )
10 5 9 eqeltrd ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ Mnd )
11 eqid ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 )
12 11 subcmn ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ Mnd ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ CMnd )
13 6 10 12 syl2an2r ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ CMnd )
14 5 13 eqeltrrd ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd )
15 7 iscrng ( 𝑆 ∈ CRing ↔ ( 𝑆 ∈ Ring ∧ ( mulGrp ‘ 𝑆 ) ∈ CMnd ) )
16 3 14 15 sylanbrc ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ CRing )