Metamath Proof Explorer


Theorem subrgcrng

Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypothesis subrgring.1 S=R𝑠A
Assertion subrgcrng RCRingASubRingRSCRing

Proof

Step Hyp Ref Expression
1 subrgring.1 S=R𝑠A
2 1 subrgring ASubRingRSRing
3 2 adantl RCRingASubRingRSRing
4 eqid mulGrpR=mulGrpR
5 1 4 mgpress RCRingASubRingRmulGrpR𝑠A=mulGrpS
6 4 crngmgp RCRingmulGrpRCMnd
7 eqid mulGrpS=mulGrpS
8 7 ringmgp SRingmulGrpSMnd
9 3 8 syl RCRingASubRingRmulGrpSMnd
10 5 9 eqeltrd RCRingASubRingRmulGrpR𝑠AMnd
11 eqid mulGrpR𝑠A=mulGrpR𝑠A
12 11 subcmn mulGrpRCMndmulGrpR𝑠AMndmulGrpR𝑠ACMnd
13 6 10 12 syl2an2r RCRingASubRingRmulGrpR𝑠ACMnd
14 5 13 eqeltrrd RCRingASubRingRmulGrpSCMnd
15 7 iscrng SCRingSRingmulGrpSCMnd
16 3 14 15 sylanbrc RCRingASubRingRSCRing