Metamath Proof Explorer


Theorem subrgcrng

Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypothesis subrgring.1 S = R 𝑠 A
Assertion subrgcrng R CRing A SubRing R S CRing

Proof

Step Hyp Ref Expression
1 subrgring.1 S = R 𝑠 A
2 1 subrgring A SubRing R S Ring
3 2 adantl R CRing A SubRing R S Ring
4 eqid mulGrp R = mulGrp R
5 1 4 mgpress R CRing A SubRing R mulGrp R 𝑠 A = mulGrp S
6 4 crngmgp R CRing mulGrp R CMnd
7 eqid mulGrp S = mulGrp S
8 7 ringmgp S Ring mulGrp S Mnd
9 3 8 syl R CRing A SubRing R mulGrp S Mnd
10 5 9 eqeltrd R CRing A SubRing R mulGrp R 𝑠 A Mnd
11 eqid mulGrp R 𝑠 A = mulGrp R 𝑠 A
12 11 subcmn mulGrp R CMnd mulGrp R 𝑠 A Mnd mulGrp R 𝑠 A CMnd
13 6 10 12 syl2an2r R CRing A SubRing R mulGrp R 𝑠 A CMnd
14 5 13 eqeltrrd R CRing A SubRing R mulGrp S CMnd
15 7 iscrng S CRing S Ring mulGrp S CMnd
16 3 14 15 sylanbrc R CRing A SubRing R S CRing