Metamath Proof Explorer


Theorem subrgring

Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgring.1 S=R𝑠A
Assertion subrgring ASubRingRSRing

Proof

Step Hyp Ref Expression
1 subrgring.1 S=R𝑠A
2 eqid BaseR=BaseR
3 eqid 1R=1R
4 2 3 issubrg ASubRingRRRingR𝑠ARingABaseR1RA
5 4 simplbi ASubRingRRRingR𝑠ARing
6 5 simprd ASubRingRR𝑠ARing
7 1 6 eqeltrid ASubRingRSRing