Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgabl.h | |
|
Assertion | subcmn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | |
|
2 | eqidd | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | mndidcl | |
6 | n0i | |
|
7 | 5 6 | syl | |
8 | reldmress | |
|
9 | 8 | ovprc2 | |
10 | 1 9 | eqtrid | |
11 | 10 | fveq2d | |
12 | base0 | |
|
13 | 11 12 | eqtr4di | |
14 | 7 13 | nsyl2 | |
15 | 14 | adantl | |
16 | eqid | |
|
17 | 1 16 | ressplusg | |
18 | 15 17 | syl | |
19 | simpr | |
|
20 | simpl | |
|
21 | eqid | |
|
22 | 1 21 | ressbasss | |
23 | 22 | sseli | |
24 | 22 | sseli | |
25 | 21 16 | cmncom | |
26 | 20 23 24 25 | syl3an | |
27 | 2 18 19 26 | iscmnd | |