Metamath Proof Explorer


Theorem subcmn

Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypothesis subgabl.h H=G𝑠S
Assertion subcmn GCMndHMndHCMnd

Proof

Step Hyp Ref Expression
1 subgabl.h H=G𝑠S
2 eqidd GCMndHMndBaseH=BaseH
3 eqid BaseH=BaseH
4 eqid 0H=0H
5 3 4 mndidcl HMnd0HBaseH
6 n0i 0HBaseH¬BaseH=
7 5 6 syl HMnd¬BaseH=
8 reldmress Reldom𝑠
9 8 ovprc2 ¬SVG𝑠S=
10 1 9 eqtrid ¬SVH=
11 10 fveq2d ¬SVBaseH=Base
12 base0 =Base
13 11 12 eqtr4di ¬SVBaseH=
14 7 13 nsyl2 HMndSV
15 14 adantl GCMndHMndSV
16 eqid +G=+G
17 1 16 ressplusg SV+G=+H
18 15 17 syl GCMndHMnd+G=+H
19 simpr GCMndHMndHMnd
20 simpl GCMndHMndGCMnd
21 eqid BaseG=BaseG
22 1 21 ressbasss BaseHBaseG
23 22 sseli xBaseHxBaseG
24 22 sseli yBaseHyBaseG
25 21 16 cmncom GCMndxBaseGyBaseGx+Gy=y+Gx
26 20 23 24 25 syl3an GCMndHMndxBaseHyBaseHx+Gy=y+Gx
27 2 18 19 26 iscmnd GCMndHMndHCMnd