Metamath Proof Explorer


Theorem iscrng

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis ringmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
Assertion iscrng ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd ) )

Proof

Step Hyp Ref Expression
1 ringmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
2 fveq2 ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) )
3 2 1 eqtr4di ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝐺 )
4 3 eleq1d ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ CMnd ↔ 𝐺 ∈ CMnd ) )
5 df-cring CRing = { 𝑟 ∈ Ring ∣ ( mulGrp ‘ 𝑟 ) ∈ CMnd }
6 4 5 elrab2 ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd ) )