Step |
Hyp |
Ref |
Expression |
1 |
|
mgpress.1 |
|- S = ( R |`s A ) |
2 |
|
mgpress.2 |
|- M = ( mulGrp ` R ) |
3 |
|
simpr |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( Base ` R ) C_ A ) |
4 |
2
|
fvexi |
|- M e. _V |
5 |
4
|
a1i |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> M e. _V ) |
6 |
|
simplr |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> A e. W ) |
7 |
|
eqid |
|- ( M |`s A ) = ( M |`s A ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
2 8
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
10 |
7 9
|
ressid2 |
|- ( ( ( Base ` R ) C_ A /\ M e. _V /\ A e. W ) -> ( M |`s A ) = M ) |
11 |
3 5 6 10
|
syl3anc |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( M |`s A ) = M ) |
12 |
|
simpll |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> R e. V ) |
13 |
1 8
|
ressid2 |
|- ( ( ( Base ` R ) C_ A /\ R e. V /\ A e. W ) -> S = R ) |
14 |
3 12 6 13
|
syl3anc |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> S = R ) |
15 |
14
|
fveq2d |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( mulGrp ` S ) = ( mulGrp ` R ) ) |
16 |
2 11 15
|
3eqtr4a |
|- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( M |`s A ) = ( mulGrp ` S ) ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
2 17
|
mgpval |
|- M = ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) |
19 |
18
|
oveq1i |
|- ( M sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) |
20 |
|
simpr |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> -. ( Base ` R ) C_ A ) |
21 |
4
|
a1i |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> M e. _V ) |
22 |
|
simplr |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> A e. W ) |
23 |
7 9
|
ressval2 |
|- ( ( -. ( Base ` R ) C_ A /\ M e. _V /\ A e. W ) -> ( M |`s A ) = ( M sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
24 |
20 21 22 23
|
syl3anc |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( M |`s A ) = ( M sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
25 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
26 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
27 |
25 26
|
mgpval |
|- ( mulGrp ` S ) = ( S sSet <. ( +g ` ndx ) , ( .r ` S ) >. ) |
28 |
|
simpll |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> R e. V ) |
29 |
1 8
|
ressval2 |
|- ( ( -. ( Base ` R ) C_ A /\ R e. V /\ A e. W ) -> S = ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
30 |
20 28 22 29
|
syl3anc |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> S = ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
31 |
1 17
|
ressmulr |
|- ( A e. W -> ( .r ` R ) = ( .r ` S ) ) |
32 |
31
|
eqcomd |
|- ( A e. W -> ( .r ` S ) = ( .r ` R ) ) |
33 |
32
|
ad2antlr |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( .r ` S ) = ( .r ` R ) ) |
34 |
33
|
opeq2d |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> <. ( +g ` ndx ) , ( .r ` S ) >. = <. ( +g ` ndx ) , ( .r ` R ) >. ) |
35 |
30 34
|
oveq12d |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( S sSet <. ( +g ` ndx ) , ( .r ` S ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
36 |
27 35
|
eqtrid |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( mulGrp ` S ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
37 |
|
basendxnplusgndx |
|- ( Base ` ndx ) =/= ( +g ` ndx ) |
38 |
37
|
necomi |
|- ( +g ` ndx ) =/= ( Base ` ndx ) |
39 |
|
fvex |
|- ( .r ` R ) e. _V |
40 |
|
fvex |
|- ( Base ` R ) e. _V |
41 |
40
|
inex2 |
|- ( A i^i ( Base ` R ) ) e. _V |
42 |
|
fvex |
|- ( +g ` ndx ) e. _V |
43 |
|
fvex |
|- ( Base ` ndx ) e. _V |
44 |
42 43
|
setscom |
|- ( ( ( R e. V /\ ( +g ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( .r ` R ) e. _V /\ ( A i^i ( Base ` R ) ) e. _V ) ) -> ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
45 |
39 41 44
|
mpanr12 |
|- ( ( R e. V /\ ( +g ` ndx ) =/= ( Base ` ndx ) ) -> ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
46 |
28 38 45
|
sylancl |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
47 |
36 46
|
eqtr4d |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( mulGrp ` S ) = ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
48 |
19 24 47
|
3eqtr4a |
|- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( M |`s A ) = ( mulGrp ` S ) ) |
49 |
16 48
|
pm2.61dan |
|- ( ( R e. V /\ A e. W ) -> ( M |`s A ) = ( mulGrp ` S ) ) |