Metamath Proof Explorer


Theorem rrxprds

Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses rrxval.r H = I
rrxbase.b B = Base H
Assertion rrxprds I V H = toCPreHil fld 𝑠 I × subringAlg fld 𝑠 B

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 rrxbase.b B = Base H
3 1 rrxval I V H = toCPreHil fld freeLMod I
4 refld fld Field
5 eqid fld freeLMod I = fld freeLMod I
6 eqid Base fld freeLMod I = Base fld freeLMod I
7 5 6 frlmpws fld Field I V fld freeLMod I = ringLMod fld 𝑠 I 𝑠 Base fld freeLMod I
8 4 7 mpan I V fld freeLMod I = ringLMod fld 𝑠 I 𝑠 Base fld freeLMod I
9 fvex subringAlg fld V
10 rlmval ringLMod fld = subringAlg fld Base fld
11 rebase = Base fld
12 11 fveq2i subringAlg fld = subringAlg fld Base fld
13 10 12 eqtr4i ringLMod fld = subringAlg fld
14 13 oveq1i ringLMod fld 𝑠 I = subringAlg fld 𝑠 I
15 11 ressid fld Field fld 𝑠 = fld
16 4 15 ax-mp fld 𝑠 = fld
17 eqidd subringAlg fld = subringAlg fld
18 11 eqimssi Base fld
19 18 a1i Base fld
20 17 19 srasca fld 𝑠 = Scalar subringAlg fld
21 20 mptru fld 𝑠 = Scalar subringAlg fld
22 16 21 eqtr3i fld = Scalar subringAlg fld
23 14 22 pwsval subringAlg fld V I V ringLMod fld 𝑠 I = fld 𝑠 I × subringAlg fld
24 9 23 mpan I V ringLMod fld 𝑠 I = fld 𝑠 I × subringAlg fld
25 24 eqcomd I V fld 𝑠 I × subringAlg fld = ringLMod fld 𝑠 I
26 3 fveq2d I V Base H = Base toCPreHil fld freeLMod I
27 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
28 27 6 tcphbas Base fld freeLMod I = Base toCPreHil fld freeLMod I
29 26 2 28 3eqtr4g I V B = Base fld freeLMod I
30 25 29 oveq12d I V fld 𝑠 I × subringAlg fld 𝑠 B = ringLMod fld 𝑠 I 𝑠 Base fld freeLMod I
31 8 30 eqtr4d I V fld freeLMod I = fld 𝑠 I × subringAlg fld 𝑠 B
32 31 fveq2d I V toCPreHil fld freeLMod I = toCPreHil fld 𝑠 I × subringAlg fld 𝑠 B
33 3 32 eqtrd I V H = toCPreHil fld 𝑠 I × subringAlg fld 𝑠 B