Metamath Proof Explorer


Theorem srasca

Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion srasca φ W 𝑠 S = Scalar A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 scaid Scalar = Slot Scalar ndx
4 vscandxnscandx ndx Scalar ndx
5 4 necomi Scalar ndx ndx
6 3 5 setsnid Scalar W sSet Scalar ndx W 𝑠 S = Scalar W sSet Scalar ndx W 𝑠 S sSet ndx W
7 slotsdifipndx ndx 𝑖 ndx Scalar ndx 𝑖 ndx
8 7 simpri Scalar ndx 𝑖 ndx
9 3 8 setsnid Scalar W sSet Scalar ndx W 𝑠 S sSet ndx W = Scalar W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
10 6 9 eqtri Scalar W sSet Scalar ndx W 𝑠 S = Scalar W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
11 ovexd φ W 𝑠 S V
12 3 setsid W V W 𝑠 S V W 𝑠 S = Scalar W sSet Scalar ndx W 𝑠 S
13 11 12 sylan2 W V φ W 𝑠 S = Scalar W sSet Scalar ndx W 𝑠 S
14 1 adantl W V φ A = subringAlg W S
15 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
16 2 15 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
17 14 16 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
18 17 fveq2d W V φ Scalar A = Scalar W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
19 10 13 18 3eqtr4a W V φ W 𝑠 S = Scalar A
20 3 str0 = Scalar
21 reldmress Rel dom 𝑠
22 21 ovprc1 ¬ W V W 𝑠 S =
23 22 adantr ¬ W V φ W 𝑠 S =
24 fv2prc ¬ W V subringAlg W S =
25 1 24 sylan9eqr ¬ W V φ A =
26 25 fveq2d ¬ W V φ Scalar A = Scalar
27 20 23 26 3eqtr4a ¬ W V φ W 𝑠 S = Scalar A
28 19 27 pm2.61ian φ W 𝑠 S = Scalar A