Metamath Proof Explorer


Theorem sraval

Description: Lemma for srabase through sravsca . (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW

Proof

Step Hyp Ref Expression
1 elex WVWV
2 1 adantr WVSBaseWWV
3 fveq2 w=WBasew=BaseW
4 3 pweqd w=W𝒫Basew=𝒫BaseW
5 id w=Ww=W
6 oveq1 w=Ww𝑠s=W𝑠s
7 6 opeq2d w=WScalarndxw𝑠s=ScalarndxW𝑠s
8 5 7 oveq12d w=WwsSetScalarndxw𝑠s=WsSetScalarndxW𝑠s
9 fveq2 w=Ww=W
10 9 opeq2d w=Wndxw=ndxW
11 8 10 oveq12d w=WwsSetScalarndxw𝑠ssSetndxw=WsSetScalarndxW𝑠ssSetndxW
12 9 opeq2d w=W𝑖ndxw=𝑖ndxW
13 11 12 oveq12d w=WwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw=WsSetScalarndxW𝑠ssSetndxWsSet𝑖ndxW
14 4 13 mpteq12dv w=Ws𝒫BasewwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw=s𝒫BaseWWsSetScalarndxW𝑠ssSetndxWsSet𝑖ndxW
15 df-sra subringAlg=wVs𝒫BasewwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw
16 fvex BaseWV
17 16 pwex 𝒫BaseWV
18 17 mptex s𝒫BaseWWsSetScalarndxW𝑠ssSetndxWsSet𝑖ndxWV
19 14 15 18 fvmpt WVsubringAlgW=s𝒫BaseWWsSetScalarndxW𝑠ssSetndxWsSet𝑖ndxW
20 2 19 syl WVSBaseWsubringAlgW=s𝒫BaseWWsSetScalarndxW𝑠ssSetndxWsSet𝑖ndxW
21 simpr WVSBaseWs=Ss=S
22 21 oveq2d WVSBaseWs=SW𝑠s=W𝑠S
23 22 opeq2d WVSBaseWs=SScalarndxW𝑠s=ScalarndxW𝑠S
24 23 oveq2d WVSBaseWs=SWsSetScalarndxW𝑠s=WsSetScalarndxW𝑠S
25 24 oveq1d WVSBaseWs=SWsSetScalarndxW𝑠ssSetndxW=WsSetScalarndxW𝑠SsSetndxW
26 25 oveq1d WVSBaseWs=SWsSetScalarndxW𝑠ssSetndxWsSet𝑖ndxW=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
27 simpr WVSBaseWSBaseW
28 16 elpw2 S𝒫BaseWSBaseW
29 27 28 sylibr WVSBaseWS𝒫BaseW
30 ovexd WVSBaseWWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxWV
31 20 26 29 30 fvmptd WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW