Description: Lemma for srabase through sravsca . (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Thierry Arnoux, 16-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | sraval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | 1 | adantr | |
3 | fveq2 | |
|
4 | 3 | pweqd | |
5 | id | |
|
6 | oveq1 | |
|
7 | 6 | opeq2d | |
8 | 5 7 | oveq12d | |
9 | fveq2 | |
|
10 | 9 | opeq2d | |
11 | 8 10 | oveq12d | |
12 | 9 | opeq2d | |
13 | 11 12 | oveq12d | |
14 | 4 13 | mpteq12dv | |
15 | df-sra | |
|
16 | fvex | |
|
17 | 16 | pwex | |
18 | 17 | mptex | |
19 | 14 15 18 | fvmpt | |
20 | 2 19 | syl | |
21 | simpr | |
|
22 | 21 | oveq2d | |
23 | 22 | opeq2d | |
24 | 23 | oveq2d | |
25 | 24 | oveq1d | |
26 | 25 | oveq1d | |
27 | simpr | |
|
28 | 16 | elpw2 | |
29 | 27 28 | sylibr | |
30 | ovexd | |
|
31 | 20 26 29 30 | fvmptd | |