Metamath Proof Explorer


Theorem srabase

Description: Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion srabase φ Base W = Base A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 baseid Base = Slot Base ndx
4 scandxnbasendx Scalar ndx Base ndx
5 vscandxnbasendx ndx Base ndx
6 ipndxnbasendx 𝑖 ndx Base ndx
7 1 2 3 4 5 6 sralem φ Base W = Base A