Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
srabase
Metamath Proof Explorer
Description: Base set of a subring algebra. (Contributed by Stefan O'Rear , 27-Nov-2014) (Revised by Mario Carneiro , 4-Oct-2015) (Revised by Thierry Arnoux , 16-Jun-2019) (Revised by AV , 29-Oct-2024)
Ref
Expression
Hypotheses
srapart.a
⊢ φ → A = subringAlg ⁡ W ⁡ S
srapart.s
⊢ φ → S ⊆ Base W
Assertion
srabase
⊢ φ → Base W = Base A
Proof
Step
Hyp
Ref
Expression
1
srapart.a
⊢ φ → A = subringAlg ⁡ W ⁡ S
2
srapart.s
⊢ φ → S ⊆ Base W
3
baseid
⊢ Base = Slot Base ndx
4
scandxnbasendx
⊢ Scalar ⁡ ndx ≠ Base ndx
5
vscandxnbasendx
⊢ ⋅ ndx ≠ Base ndx
6
ipndxnbasendx
⊢ ⋅ 𝑖 ⁡ ndx ≠ Base ndx
7
1 2 3 4 5 6
sralem
⊢ φ → Base W = Base A