Metamath Proof Explorer


Theorem srabaseOLD

Description: Obsolete proof of srabase as of 29-Oct-2024. Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion srabaseOLD φ Base W = Base A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 df-base Base = Slot 1
4 1nn 1
5 1lt5 1 < 5
6 5 orci 1 < 5 8 < 1
7 1 2 3 4 6 sralemOLD φ Base W = Base A