Metamath Proof Explorer


Theorem srabase

Description: Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion srabase ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
3 baseid Base = Slot ( Base ‘ ndx )
4 scandxnbasendx ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx )
5 vscandxnbasendx ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx )
6 ipndxnbasendx ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx )
7 1 2 3 4 5 6 sralem ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )