Metamath Proof Explorer
		
		
		
		Description:  The slot for the scalar is not the slot for the base set in an extensible
     structure.  (Contributed by AV, 21-Oct-2024)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					scandxnbasendx | 
					⊢  ( Scalar ‘ ndx )  ≠  ( Base ‘ ndx )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							1lt5 | 
							⊢ 1  <  5  | 
						
						
							| 3 | 
							
								1 2
							 | 
							gtneii | 
							⊢ 5  ≠  1  | 
						
						
							| 4 | 
							
								
							 | 
							scandx | 
							⊢ ( Scalar ‘ ndx )  =  5  | 
						
						
							| 5 | 
							
								
							 | 
							basendx | 
							⊢ ( Base ‘ ndx )  =  1  | 
						
						
							| 6 | 
							
								4 5
							 | 
							neeq12i | 
							⊢ ( ( Scalar ‘ ndx )  ≠  ( Base ‘ ndx )  ↔  5  ≠  1 )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							mpbir | 
							⊢ ( Scalar ‘ ndx )  ≠  ( Base ‘ ndx )  |