Metamath Proof Explorer


Theorem sravsca

Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion sravsca φ W = A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 ovex W sSet Scalar ndx W 𝑠 S V
4 fvex W V
5 vscaid 𝑠 = Slot ndx
6 5 setsid W sSet Scalar ndx W 𝑠 S V W V W = W sSet Scalar ndx W 𝑠 S sSet ndx W
7 3 4 6 mp2an W = W sSet Scalar ndx W 𝑠 S sSet ndx W
8 slotsdifipndx ndx 𝑖 ndx Scalar ndx 𝑖 ndx
9 8 simpli ndx 𝑖 ndx
10 5 9 setsnid W sSet Scalar ndx W 𝑠 S sSet ndx W = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
11 7 10 eqtri W = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
12 1 adantl W V φ A = subringAlg W S
13 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
14 2 13 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
15 12 14 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
16 15 fveq2d W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
17 11 16 eqtr4id W V φ W = A
18 5 str0 =
19 fvprc ¬ W V W =
20 19 adantr ¬ W V φ W =
21 fv2prc ¬ W V subringAlg W S =
22 1 21 sylan9eqr ¬ W V φ A =
23 22 fveq2d ¬ W V φ A =
24 18 20 23 3eqtr4a ¬ W V φ W = A
25 17 24 pm2.61ian φ W = A