Metamath Proof Explorer


Theorem sravscaOLD

Description: Obsolete proof of sravsca as of 12-Nov-2024. The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion sravscaOLD φW=A

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 ovex WsSetScalarndxW𝑠SV
4 fvex WV
5 vscaid 𝑠=Slotndx
6 5 setsid WsSetScalarndxW𝑠SVWVW=WsSetScalarndxW𝑠SsSetndxW
7 3 4 6 mp2an W=WsSetScalarndxW𝑠SsSetndxW
8 6re 6
9 6lt8 6<8
10 8 9 ltneii 68
11 vscandx ndx=6
12 ipndx 𝑖ndx=8
13 11 12 neeq12i ndx𝑖ndx68
14 10 13 mpbir ndx𝑖ndx
15 5 14 setsnid WsSetScalarndxW𝑠SsSetndxW=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
16 7 15 eqtri W=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
17 1 adantl WVφA=subringAlgWS
18 sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
19 2 18 sylan2 WVφsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
20 17 19 eqtrd WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
21 20 fveq2d WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
22 16 21 eqtr4id WVφW=A
23 5 str0 =
24 fvprc ¬WVW=
25 24 adantr ¬WVφW=
26 fv2prc ¬WVsubringAlgWS=
27 1 26 sylan9eqr ¬WVφA=
28 27 fveq2d ¬WVφA=
29 23 25 28 3eqtr4a ¬WVφW=A
30 22 29 pm2.61ian φW=A