Description: Obsolete proof of sravsca as of 12-Nov-2024. The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srapart.a | |
|
srapart.s | |
||
Assertion | sravscaOLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | |
|
2 | srapart.s | |
|
3 | ovex | |
|
4 | fvex | |
|
5 | vscaid | |
|
6 | 5 | setsid | |
7 | 3 4 6 | mp2an | |
8 | 6re | |
|
9 | 6lt8 | |
|
10 | 8 9 | ltneii | |
11 | vscandx | |
|
12 | ipndx | |
|
13 | 11 12 | neeq12i | |
14 | 10 13 | mpbir | |
15 | 5 14 | setsnid | |
16 | 7 15 | eqtri | |
17 | 1 | adantl | |
18 | sraval | |
|
19 | 2 18 | sylan2 | |
20 | 17 19 | eqtrd | |
21 | 20 | fveq2d | |
22 | 16 21 | eqtr4id | |
23 | 5 | str0 | |
24 | fvprc | |
|
25 | 24 | adantr | |
26 | fv2prc | |
|
27 | 1 26 | sylan9eqr | |
28 | 27 | fveq2d | |
29 | 23 25 28 | 3eqtr4a | |
30 | 22 29 | pm2.61ian | |