Metamath Proof Explorer


Theorem sraip

Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion sraip φW=𝑖A

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 ovex WsSetScalarndxW𝑠SsSetndxWV
4 fvex WV
5 ipid 𝑖=Slot𝑖ndx
6 5 setsid WsSetScalarndxW𝑠SsSetndxWVWVW=𝑖WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
7 3 4 6 mp2an W=𝑖WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
8 1 adantl WVφA=subringAlgWS
9 sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
10 2 9 sylan2 WVφsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
11 8 10 eqtrd WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
12 11 fveq2d WVφ𝑖A=𝑖WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
13 7 12 eqtr4id WVφW=𝑖A
14 5 str0 =𝑖
15 fvprc ¬WVW=
16 15 adantr ¬WVφW=
17 fv2prc ¬WVsubringAlgWS=
18 1 17 sylan9eqr ¬WVφA=
19 18 fveq2d ¬WVφ𝑖A=𝑖
20 14 16 19 3eqtr4a ¬WVφW=𝑖A
21 13 20 pm2.61ian φW=𝑖A