Metamath Proof Explorer


Theorem sratset

Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion sratset φTopSetW=TopSetA

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 tsetid TopSet=SlotTopSetndx
4 slotstnscsi TopSetndxScalarndxTopSetndxndxTopSetndx𝑖ndx
5 4 simp1i TopSetndxScalarndx
6 5 necomi ScalarndxTopSetndx
7 4 simp2i TopSetndxndx
8 7 necomi ndxTopSetndx
9 4 simp3i TopSetndx𝑖ndx
10 9 necomi 𝑖ndxTopSetndx
11 1 2 3 6 8 10 sralem φTopSetW=TopSetA