| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srapart.a |  |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) ) | 
						
							| 2 |  | srapart.s |  |-  ( ph -> S C_ ( Base ` W ) ) | 
						
							| 3 |  | ovex |  |-  ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) e. _V | 
						
							| 4 |  | fvex |  |-  ( .r ` W ) e. _V | 
						
							| 5 |  | vscaid |  |-  .s = Slot ( .s ` ndx ) | 
						
							| 6 | 5 | setsid |  |-  ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) e. _V /\ ( .r ` W ) e. _V ) -> ( .r ` W ) = ( .s ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) ) | 
						
							| 7 | 3 4 6 | mp2an |  |-  ( .r ` W ) = ( .s ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 8 |  | 6re |  |-  6 e. RR | 
						
							| 9 |  | 6lt8 |  |-  6 < 8 | 
						
							| 10 | 8 9 | ltneii |  |-  6 =/= 8 | 
						
							| 11 |  | vscandx |  |-  ( .s ` ndx ) = 6 | 
						
							| 12 |  | ipndx |  |-  ( .i ` ndx ) = 8 | 
						
							| 13 | 11 12 | neeq12i |  |-  ( ( .s ` ndx ) =/= ( .i ` ndx ) <-> 6 =/= 8 ) | 
						
							| 14 | 10 13 | mpbir |  |-  ( .s ` ndx ) =/= ( .i ` ndx ) | 
						
							| 15 | 5 14 | setsnid |  |-  ( .s ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( .s ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 16 | 7 15 | eqtri |  |-  ( .r ` W ) = ( .s ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 17 | 1 | adantl |  |-  ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) | 
						
							| 18 |  | sraval |  |-  ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 19 | 2 18 | sylan2 |  |-  ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 20 | 17 19 | eqtrd |  |-  ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( W e. _V /\ ph ) -> ( .s ` A ) = ( .s ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) | 
						
							| 22 | 16 21 | eqtr4id |  |-  ( ( W e. _V /\ ph ) -> ( .r ` W ) = ( .s ` A ) ) | 
						
							| 23 | 5 | str0 |  |-  (/) = ( .s ` (/) ) | 
						
							| 24 |  | fvprc |  |-  ( -. W e. _V -> ( .r ` W ) = (/) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = (/) ) | 
						
							| 26 |  | fv2prc |  |-  ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) | 
						
							| 27 | 1 26 | sylan9eqr |  |-  ( ( -. W e. _V /\ ph ) -> A = (/) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( -. W e. _V /\ ph ) -> ( .s ` A ) = ( .s ` (/) ) ) | 
						
							| 29 | 23 25 28 | 3eqtr4a |  |-  ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = ( .s ` A ) ) | 
						
							| 30 | 22 29 | pm2.61ian |  |-  ( ph -> ( .r ` W ) = ( .s ` A ) ) |