Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
4 |
|
vscandxnscandx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
5 |
4
|
necomi |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
6 |
3 5
|
setsnid |
⊢ ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( Scalar ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
7 |
|
slotsdifipndx |
⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |
8 |
7
|
simpri |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
9 |
3 8
|
setsnid |
⊢ ( Scalar ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
10 |
6 9
|
eqtri |
⊢ ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
11 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) ∈ V ) |
12 |
3
|
setsid |
⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 ↾s 𝑆 ) ∈ V ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) ) |
14 |
1
|
adantl |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
15 |
|
sraval |
⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
16 |
2 15
|
sylan2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
17 |
14 16
|
eqtrd |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) ) |
19 |
10 13 18
|
3eqtr4a |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
20 |
3
|
str0 |
⊢ ∅ = ( Scalar ‘ ∅ ) |
21 |
|
reldmress |
⊢ Rel dom ↾s |
22 |
21
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝑆 ) = ∅ ) |
23 |
22
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ∅ ) |
24 |
|
fv2prc |
⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ∅ ) |
25 |
1 24
|
sylan9eqr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ∅ ) |
26 |
25
|
fveq2d |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ∅ ) ) |
27 |
20 23 26
|
3eqtr4a |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
28 |
19 27
|
pm2.61ian |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |