Metamath Proof Explorer


Theorem srasca

Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion srasca ( 𝜑 → ( 𝑊s 𝑆 ) = ( Scalar ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
3 scaid Scalar = Slot ( Scalar ‘ ndx )
4 5re 5 ∈ ℝ
5 5lt6 5 < 6
6 4 5 ltneii 5 ≠ 6
7 scandx ( Scalar ‘ ndx ) = 5
8 vscandx ( ·𝑠 ‘ ndx ) = 6
9 7 8 neeq12i ( ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 5 ≠ 6 )
10 6 9 mpbir ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
11 3 10 setsnid ( Scalar ‘ ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) ) = ( Scalar ‘ ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) )
12 5lt8 5 < 8
13 4 12 ltneii 5 ≠ 8
14 ipndx ( ·𝑖 ‘ ndx ) = 8
15 7 14 neeq12i ( ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 5 ≠ 8 )
16 13 15 mpbir ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx )
17 3 16 setsnid ( Scalar ‘ ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑊 ) ⟩ ) )
18 11 17 eqtri ( Scalar ‘ ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑊 ) ⟩ ) )
19 ovexd ( 𝜑 → ( 𝑊s 𝑆 ) ∈ V )
20 3 setsid ( ( 𝑊 ∈ V ∧ ( 𝑊s 𝑆 ) ∈ V ) → ( 𝑊s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) ) )
21 19 20 sylan2 ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) ) )
22 1 adantl ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
23 sraval ( ( 𝑊 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑊 ) ⟩ ) )
24 2 23 sylan2 ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑊 ) ⟩ ) )
25 22 24 eqtrd ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑊 ) ⟩ ) )
26 25 fveq2d ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( ( ( 𝑊 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑊s 𝑆 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑊 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑊 ) ⟩ ) ) )
27 18 21 26 3eqtr4a ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊s 𝑆 ) = ( Scalar ‘ 𝐴 ) )
28 3 str0 ∅ = ( Scalar ‘ ∅ )
29 reldmress Rel dom ↾s
30 29 ovprc1 ( ¬ 𝑊 ∈ V → ( 𝑊s 𝑆 ) = ∅ )
31 30 adantr ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊s 𝑆 ) = ∅ )
32 fv2prc ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ∅ )
33 1 32 sylan9eqr ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ∅ )
34 33 fveq2d ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ∅ ) )
35 28 31 34 3eqtr4a ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊s 𝑆 ) = ( Scalar ‘ 𝐴 ) )
36 27 35 pm2.61ian ( 𝜑 → ( 𝑊s 𝑆 ) = ( Scalar ‘ 𝐴 ) )