| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srapart.a | ⊢ ( 𝜑  →  𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) ) | 
						
							| 2 |  | srapart.s | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 3 |  | scaid | ⊢ Scalar  =  Slot  ( Scalar ‘ ndx ) | 
						
							| 4 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 5 |  | 5lt6 | ⊢ 5  <  6 | 
						
							| 6 | 4 5 | ltneii | ⊢ 5  ≠  6 | 
						
							| 7 |  | scandx | ⊢ ( Scalar ‘ ndx )  =  5 | 
						
							| 8 |  | vscandx | ⊢ (  ·𝑠  ‘ ndx )  =  6 | 
						
							| 9 | 7 8 | neeq12i | ⊢ ( ( Scalar ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ↔  5  ≠  6 ) | 
						
							| 10 | 6 9 | mpbir | ⊢ ( Scalar ‘ ndx )  ≠  (  ·𝑠  ‘ ndx ) | 
						
							| 11 | 3 10 | setsnid | ⊢ ( Scalar ‘ ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 ) )  =  ( Scalar ‘ ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) | 
						
							| 12 |  | 5lt8 | ⊢ 5  <  8 | 
						
							| 13 | 4 12 | ltneii | ⊢ 5  ≠  8 | 
						
							| 14 |  | ipndx | ⊢ ( ·𝑖 ‘ ndx )  =  8 | 
						
							| 15 | 7 14 | neeq12i | ⊢ ( ( Scalar ‘ ndx )  ≠  ( ·𝑖 ‘ ndx )  ↔  5  ≠  8 ) | 
						
							| 16 | 13 15 | mpbir | ⊢ ( Scalar ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) | 
						
							| 17 | 3 16 | setsnid | ⊢ ( Scalar ‘ ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) )  =  ( Scalar ‘ ( ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) | 
						
							| 18 | 11 17 | eqtri | ⊢ ( Scalar ‘ ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 ) )  =  ( Scalar ‘ ( ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) | 
						
							| 19 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑊  ↾s  𝑆 )  ∈  V ) | 
						
							| 20 | 3 | setsid | ⊢ ( ( 𝑊  ∈  V  ∧  ( 𝑊  ↾s  𝑆 )  ∈  V )  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 ) ) ) | 
						
							| 21 | 19 20 | sylan2 | ⊢ ( ( 𝑊  ∈  V  ∧  𝜑 )  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 ) ) ) | 
						
							| 22 | 1 | adantl | ⊢ ( ( 𝑊  ∈  V  ∧  𝜑 )  →  𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) ) | 
						
							| 23 |  | sraval | ⊢ ( ( 𝑊  ∈  V  ∧  𝑆  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 )  =  ( ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) | 
						
							| 24 | 2 23 | sylan2 | ⊢ ( ( 𝑊  ∈  V  ∧  𝜑 )  →  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 )  =  ( ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( ( 𝑊  ∈  V  ∧  𝜑 )  →  𝐴  =  ( ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ( 𝑊  ∈  V  ∧  𝜑 )  →  ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ ( ( ( 𝑊  sSet  〈 ( Scalar ‘ ndx ) ,  ( 𝑊  ↾s  𝑆 ) 〉 )  sSet  〈 (  ·𝑠  ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 )  sSet  〈 ( ·𝑖 ‘ ndx ) ,  ( .r ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 27 | 18 21 26 | 3eqtr4a | ⊢ ( ( 𝑊  ∈  V  ∧  𝜑 )  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 28 | 3 | str0 | ⊢ ∅  =  ( Scalar ‘ ∅ ) | 
						
							| 29 |  | reldmress | ⊢ Rel  dom   ↾s | 
						
							| 30 | 29 | ovprc1 | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑊  ↾s  𝑆 )  =  ∅ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ¬  𝑊  ∈  V  ∧  𝜑 )  →  ( 𝑊  ↾s  𝑆 )  =  ∅ ) | 
						
							| 32 |  | fv2prc | ⊢ ( ¬  𝑊  ∈  V  →  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 )  =  ∅ ) | 
						
							| 33 | 1 32 | sylan9eqr | ⊢ ( ( ¬  𝑊  ∈  V  ∧  𝜑 )  →  𝐴  =  ∅ ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( ¬  𝑊  ∈  V  ∧  𝜑 )  →  ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ ∅ ) ) | 
						
							| 35 | 28 31 34 | 3eqtr4a | ⊢ ( ( ¬  𝑊  ∈  V  ∧  𝜑 )  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 36 | 27 35 | pm2.61ian | ⊢ ( 𝜑  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ 𝐴 ) ) |