| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srapart.a |  |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) ) | 
						
							| 2 |  | srapart.s |  |-  ( ph -> S C_ ( Base ` W ) ) | 
						
							| 3 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 4 |  | 5re |  |-  5 e. RR | 
						
							| 5 |  | 5lt6 |  |-  5 < 6 | 
						
							| 6 | 4 5 | ltneii |  |-  5 =/= 6 | 
						
							| 7 |  | scandx |  |-  ( Scalar ` ndx ) = 5 | 
						
							| 8 |  | vscandx |  |-  ( .s ` ndx ) = 6 | 
						
							| 9 | 7 8 | neeq12i |  |-  ( ( Scalar ` ndx ) =/= ( .s ` ndx ) <-> 5 =/= 6 ) | 
						
							| 10 | 6 9 | mpbir |  |-  ( Scalar ` ndx ) =/= ( .s ` ndx ) | 
						
							| 11 | 3 10 | setsnid |  |-  ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( Scalar ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 12 |  | 5lt8 |  |-  5 < 8 | 
						
							| 13 | 4 12 | ltneii |  |-  5 =/= 8 | 
						
							| 14 |  | ipndx |  |-  ( .i ` ndx ) = 8 | 
						
							| 15 | 7 14 | neeq12i |  |-  ( ( Scalar ` ndx ) =/= ( .i ` ndx ) <-> 5 =/= 8 ) | 
						
							| 16 | 13 15 | mpbir |  |-  ( Scalar ` ndx ) =/= ( .i ` ndx ) | 
						
							| 17 | 3 16 | setsnid |  |-  ( Scalar ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( Scalar ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 18 | 11 17 | eqtri |  |-  ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( Scalar ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 19 |  | ovexd |  |-  ( ph -> ( W |`s S ) e. _V ) | 
						
							| 20 | 3 | setsid |  |-  ( ( W e. _V /\ ( W |`s S ) e. _V ) -> ( W |`s S ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) ) | 
						
							| 21 | 19 20 | sylan2 |  |-  ( ( W e. _V /\ ph ) -> ( W |`s S ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) ) | 
						
							| 22 | 1 | adantl |  |-  ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) | 
						
							| 23 |  | sraval |  |-  ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 24 | 2 23 | sylan2 |  |-  ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( W e. _V /\ ph ) -> ( Scalar ` A ) = ( Scalar ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) | 
						
							| 27 | 18 21 26 | 3eqtr4a |  |-  ( ( W e. _V /\ ph ) -> ( W |`s S ) = ( Scalar ` A ) ) | 
						
							| 28 | 3 | str0 |  |-  (/) = ( Scalar ` (/) ) | 
						
							| 29 |  | reldmress |  |-  Rel dom |`s | 
						
							| 30 | 29 | ovprc1 |  |-  ( -. W e. _V -> ( W |`s S ) = (/) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( -. W e. _V /\ ph ) -> ( W |`s S ) = (/) ) | 
						
							| 32 |  | fv2prc |  |-  ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) | 
						
							| 33 | 1 32 | sylan9eqr |  |-  ( ( -. W e. _V /\ ph ) -> A = (/) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( -. W e. _V /\ ph ) -> ( Scalar ` A ) = ( Scalar ` (/) ) ) | 
						
							| 35 | 28 31 34 | 3eqtr4a |  |-  ( ( -. W e. _V /\ ph ) -> ( W |`s S ) = ( Scalar ` A ) ) | 
						
							| 36 | 27 35 | pm2.61ian |  |-  ( ph -> ( W |`s S ) = ( Scalar ` A ) ) |