| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 2 |  | 6lt8 | ⊢ 6  <  8 | 
						
							| 3 | 1 2 | ltneii | ⊢ 6  ≠  8 | 
						
							| 4 |  | vscandx | ⊢ (  ·𝑠  ‘ ndx )  =  6 | 
						
							| 5 |  | ipndx | ⊢ ( ·𝑖 ‘ ndx )  =  8 | 
						
							| 6 | 4 5 | neeq12i | ⊢ ( (  ·𝑠  ‘ ndx )  ≠  ( ·𝑖 ‘ ndx )  ↔  6  ≠  8 ) | 
						
							| 7 | 3 6 | mpbir | ⊢ (  ·𝑠  ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) | 
						
							| 8 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 9 |  | 5lt8 | ⊢ 5  <  8 | 
						
							| 10 | 8 9 | ltneii | ⊢ 5  ≠  8 | 
						
							| 11 |  | scandx | ⊢ ( Scalar ‘ ndx )  =  5 | 
						
							| 12 | 11 5 | neeq12i | ⊢ ( ( Scalar ‘ ndx )  ≠  ( ·𝑖 ‘ ndx )  ↔  5  ≠  8 ) | 
						
							| 13 | 10 12 | mpbir | ⊢ ( Scalar ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) | 
						
							| 14 | 7 13 | pm3.2i | ⊢ ( (  ·𝑠  ‘ ndx )  ≠  ( ·𝑖 ‘ ndx )  ∧  ( Scalar ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) ) |