Metamath Proof Explorer


Theorem slotsdifipndx

Description: The slot for the scalar is not the index of other slots. Formerly part of proof for srasca and sravsca . (Contributed by AV, 12-Nov-2024)

Ref Expression
Assertion slotsdifipndx ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) )

Proof

Step Hyp Ref Expression
1 6re 6 ∈ ℝ
2 6lt8 6 < 8
3 1 2 ltneii 6 ≠ 8
4 vscandx ( ·𝑠 ‘ ndx ) = 6
5 ipndx ( ·𝑖 ‘ ndx ) = 8
6 4 5 neeq12i ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 6 ≠ 8 )
7 3 6 mpbir ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx )
8 5re 5 ∈ ℝ
9 5lt8 5 < 8
10 8 9 ltneii 5 ≠ 8
11 scandx ( Scalar ‘ ndx ) = 5
12 11 5 neeq12i ( ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 5 ≠ 8 )
13 10 12 mpbir ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx )
14 7 13 pm3.2i ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) )