Metamath Proof Explorer


Theorem slotsdifipndx

Description: The slot for the scalar is not the index of other slots. Formerly part of proof for srasca and sravsca . (Contributed by AV, 12-Nov-2024)

Ref Expression
Assertion slotsdifipndx
|- ( ( .s ` ndx ) =/= ( .i ` ndx ) /\ ( Scalar ` ndx ) =/= ( .i ` ndx ) )

Proof

Step Hyp Ref Expression
1 6re
 |-  6 e. RR
2 6lt8
 |-  6 < 8
3 1 2 ltneii
 |-  6 =/= 8
4 vscandx
 |-  ( .s ` ndx ) = 6
5 ipndx
 |-  ( .i ` ndx ) = 8
6 4 5 neeq12i
 |-  ( ( .s ` ndx ) =/= ( .i ` ndx ) <-> 6 =/= 8 )
7 3 6 mpbir
 |-  ( .s ` ndx ) =/= ( .i ` ndx )
8 5re
 |-  5 e. RR
9 5lt8
 |-  5 < 8
10 8 9 ltneii
 |-  5 =/= 8
11 scandx
 |-  ( Scalar ` ndx ) = 5
12 11 5 neeq12i
 |-  ( ( Scalar ` ndx ) =/= ( .i ` ndx ) <-> 5 =/= 8 )
13 10 12 mpbir
 |-  ( Scalar ` ndx ) =/= ( .i ` ndx )
14 7 13 pm3.2i
 |-  ( ( .s ` ndx ) =/= ( .i ` ndx ) /\ ( Scalar ` ndx ) =/= ( .i ` ndx ) )