Metamath Proof Explorer


Theorem frlmpws

Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmpws.b B = Base F
Assertion frlmpws R V I W F = ringLMod R 𝑠 I 𝑠 B

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmpws.b B = Base F
3 eqid Base R m I × ringLMod R = Base R m I × ringLMod R
4 3 dsmmval2 R m I × ringLMod R = R 𝑠 I × ringLMod R 𝑠 Base R m I × ringLMod R
5 rlmsca R V R = Scalar ringLMod R
6 5 adantr R V I W R = Scalar ringLMod R
7 6 oveq1d R V I W R 𝑠 I × ringLMod R = Scalar ringLMod R 𝑠 I × ringLMod R
8 1 frlmval R V I W F = R m I × ringLMod R
9 8 eqcomd R V I W R m I × ringLMod R = F
10 9 fveq2d R V I W Base R m I × ringLMod R = Base F
11 10 2 eqtr4di R V I W Base R m I × ringLMod R = B
12 7 11 oveq12d R V I W R 𝑠 I × ringLMod R 𝑠 Base R m I × ringLMod R = Scalar ringLMod R 𝑠 I × ringLMod R 𝑠 B
13 4 12 syl5eq R V I W R m I × ringLMod R = Scalar ringLMod R 𝑠 I × ringLMod R 𝑠 B
14 fvex ringLMod R V
15 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
16 eqid Scalar ringLMod R = Scalar ringLMod R
17 15 16 pwsval ringLMod R V I W ringLMod R 𝑠 I = Scalar ringLMod R 𝑠 I × ringLMod R
18 14 17 mpan I W ringLMod R 𝑠 I = Scalar ringLMod R 𝑠 I × ringLMod R
19 18 adantl R V I W ringLMod R 𝑠 I = Scalar ringLMod R 𝑠 I × ringLMod R
20 19 oveq1d R V I W ringLMod R 𝑠 I 𝑠 B = Scalar ringLMod R 𝑠 I × ringLMod R 𝑠 B
21 13 8 20 3eqtr4d R V I W F = ringLMod R 𝑠 I 𝑠 B