Metamath Proof Explorer


Theorem dsmmval2

Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis dsmmval2.b B=BaseSmR
Assertion dsmmval2 SmR=S𝑠R𝑠B

Proof

Step Hyp Ref Expression
1 dsmmval2.b B=BaseSmR
2 ssrab2 fBaseS𝑠R|xdomR|fx0RxFinBaseS𝑠R
3 eqid S𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin=S𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
4 eqid BaseS𝑠R=BaseS𝑠R
5 3 4 ressbas2 fBaseS𝑠R|xdomR|fx0RxFinBaseS𝑠RfBaseS𝑠R|xdomR|fx0RxFin=BaseS𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
6 2 5 ax-mp fBaseS𝑠R|xdomR|fx0RxFin=BaseS𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
7 6 oveq2i S𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin=S𝑠R𝑠BaseS𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
8 eqid fBaseS𝑠R|xdomR|fx0RxFin=fBaseS𝑠R|xdomR|fx0RxFin
9 8 dsmmval RVSmR=S𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
10 9 fveq2d RVBaseSmR=BaseS𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
11 10 oveq2d RVS𝑠R𝑠BaseSmR=S𝑠R𝑠BaseS𝑠R𝑠fBaseS𝑠R|xdomR|fx0RxFin
12 7 9 11 3eqtr4a RVSmR=S𝑠R𝑠BaseSmR
13 ress0 𝑠BaseSmR=
14 13 eqcomi =𝑠BaseSmR
15 reldmdsmm Reldomm
16 15 ovprc2 ¬RVSmR=
17 reldmprds Reldom𝑠
18 17 ovprc2 ¬RVS𝑠R=
19 18 oveq1d ¬RVS𝑠R𝑠BaseSmR=𝑠BaseSmR
20 14 16 19 3eqtr4a ¬RVSmR=S𝑠R𝑠BaseSmR
21 12 20 pm2.61i SmR=S𝑠R𝑠BaseSmR
22 1 oveq2i S𝑠R𝑠B=S𝑠R𝑠BaseSmR
23 21 22 eqtr4i SmR=S𝑠R𝑠B