| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxval.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | elex |  |-  ( I e. V -> I e. _V ) | 
						
							| 3 |  | oveq2 |  |-  ( i = I -> ( RRfld freeLMod i ) = ( RRfld freeLMod I ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( i = I -> ( toCPreHil ` ( RRfld freeLMod i ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 5 |  | df-rrx |  |-  RR^ = ( i e. _V |-> ( toCPreHil ` ( RRfld freeLMod i ) ) ) | 
						
							| 6 |  | fvex |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) e. _V | 
						
							| 7 | 4 5 6 | fvmpt |  |-  ( I e. _V -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( I e. V -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 9 | 1 8 | eqtrid |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |