| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxval.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrxbase.b |  |-  B = ( Base ` H ) | 
						
							| 3 |  | resrng |  |-  RRfld e. *Ring | 
						
							| 4 |  | srngring |  |-  ( RRfld e. *Ring -> RRfld e. Ring ) | 
						
							| 5 | 3 4 | ax-mp |  |-  RRfld e. Ring | 
						
							| 6 |  | eqid |  |-  ( RRfld freeLMod I ) = ( RRfld freeLMod I ) | 
						
							| 7 | 6 | frlmlmod |  |-  ( ( RRfld e. Ring /\ I e. V ) -> ( RRfld freeLMod I ) e. LMod ) | 
						
							| 8 | 5 7 | mpan |  |-  ( I e. V -> ( RRfld freeLMod I ) e. LMod ) | 
						
							| 9 |  | lmodgrp |  |-  ( ( RRfld freeLMod I ) e. LMod -> ( RRfld freeLMod I ) e. Grp ) | 
						
							| 10 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 11 |  | eqid |  |-  ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) | 
						
							| 13 |  | eqid |  |-  ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) | 
						
							| 14 | 10 11 12 13 | tchnmfval |  |-  ( ( RRfld freeLMod I ) e. Grp -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) | 
						
							| 15 | 8 9 14 | 3syl |  |-  ( I e. V -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) | 
						
							| 16 | 1 | rrxval |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( I e. V -> ( norm ` H ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 18 | 16 | fveq2d |  |-  ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 19 | 10 12 | tcphbas |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 20 | 18 2 19 | 3eqtr4g |  |-  ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 21 | 1 2 | rrxbase |  |-  ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) | 
						
							| 22 |  | ssrab2 |  |-  { f e. ( RR ^m I ) | f finSupp 0 } C_ ( RR ^m I ) | 
						
							| 23 | 21 22 | eqsstrdi |  |-  ( I e. V -> B C_ ( RR ^m I ) ) | 
						
							| 24 | 23 | sselda |  |-  ( ( I e. V /\ f e. B ) -> f e. ( RR ^m I ) ) | 
						
							| 25 | 16 | fveq2d |  |-  ( I e. V -> ( .i ` H ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 26 | 1 2 | rrxip |  |-  ( I e. V -> ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) = ( .i ` H ) ) | 
						
							| 27 | 10 13 | tcphip |  |-  ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 28 | 27 | a1i |  |-  ( I e. V -> ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 29 | 25 26 28 | 3eqtr4rd |  |-  ( I e. V -> ( .i ` ( RRfld freeLMod I ) ) = ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( .i ` ( RRfld freeLMod I ) ) = ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) ) | 
						
							| 31 |  | simprl |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> h = f ) | 
						
							| 32 | 31 | fveq1d |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( h ` x ) = ( f ` x ) ) | 
						
							| 33 |  | simprr |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> g = f ) | 
						
							| 34 | 33 | fveq1d |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( g ` x ) = ( f ` x ) ) | 
						
							| 35 | 32 34 | oveq12d |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) x. ( f ` x ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) x. ( f ` x ) ) ) | 
						
							| 37 |  | elmapi |  |-  ( f e. ( RR ^m I ) -> f : I --> RR ) | 
						
							| 38 | 37 | adantl |  |-  ( ( I e. V /\ f e. ( RR ^m I ) ) -> f : I --> RR ) | 
						
							| 39 | 38 | ffvelcdmda |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. CC ) | 
						
							| 41 | 40 | adantlr |  |-  ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( f ` x ) e. CC ) | 
						
							| 42 | 41 | sqvald |  |-  ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( f ` x ) ^ 2 ) = ( ( f ` x ) x. ( f ` x ) ) ) | 
						
							| 43 | 36 42 | eqtr4d |  |-  ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) ^ 2 ) ) | 
						
							| 44 | 43 | mpteq2dva |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) | 
						
							| 46 |  | simpr |  |-  ( ( I e. V /\ f e. ( RR ^m I ) ) -> f e. ( RR ^m I ) ) | 
						
							| 47 |  | ovexd |  |-  ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) e. _V ) | 
						
							| 48 | 30 45 46 46 47 | ovmpod |  |-  ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) | 
						
							| 49 | 24 48 | syldan |  |-  ( ( I e. V /\ f e. B ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( I e. V /\ f e. B ) -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) = ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( I e. V /\ f e. B ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) | 
						
							| 52 | 20 51 | mpteq12dva |  |-  ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) | 
						
							| 53 | 15 17 52 | 3eqtr4rd |  |-  ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) |