| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphnmval.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | tcphnmval.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | tcphnmval.h |  |-  ., = ( .i ` W ) | 
						
							| 5 |  | eqid |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) | 
						
							| 6 |  | fvrn0 |  |-  ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) | 
						
							| 7 | 6 | a1i |  |-  ( x e. V -> ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) ) | 
						
							| 8 | 5 7 | fmpti |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) | 
						
							| 9 | 1 3 4 | tcphval |  |-  G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) | 
						
							| 10 |  | cnex |  |-  CC e. _V | 
						
							| 11 |  | sqrtf |  |-  sqrt : CC --> CC | 
						
							| 12 |  | frn |  |-  ( sqrt : CC --> CC -> ran sqrt C_ CC ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ran sqrt C_ CC | 
						
							| 14 | 10 13 | ssexi |  |-  ran sqrt e. _V | 
						
							| 15 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 16 | 14 15 | unex |  |-  ( ran sqrt u. { (/) } ) e. _V | 
						
							| 17 | 9 3 16 | tngnm |  |-  ( ( W e. Grp /\ ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) ) -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( norm ` G ) ) | 
						
							| 18 | 8 17 | mpan2 |  |-  ( W e. Grp -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( norm ` G ) ) | 
						
							| 19 | 2 18 | eqtr4id |  |-  ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |