Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sqrtf | |- sqrt : CC --> CC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex | |- ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) e. _V |
|
2 | df-sqrt | |- sqrt = ( x e. CC |-> ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) |
|
3 | 1 2 | fnmpti | |- sqrt Fn CC |
4 | sqrtcl | |- ( x e. CC -> ( sqrt ` x ) e. CC ) |
|
5 | 4 | rgen | |- A. x e. CC ( sqrt ` x ) e. CC |
6 | ffnfv | |- ( sqrt : CC --> CC <-> ( sqrt Fn CC /\ A. x e. CC ( sqrt ` x ) e. CC ) ) |
|
7 | 3 5 6 | mpbir2an | |- sqrt : CC --> CC |