Metamath Proof Explorer


Theorem sqrtf

Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Assertion sqrtf
|- sqrt : CC --> CC

Proof

Step Hyp Ref Expression
1 riotaex
 |-  ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) e. _V
2 df-sqrt
 |-  sqrt = ( x e. CC |-> ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) )
3 1 2 fnmpti
 |-  sqrt Fn CC
4 sqrtcl
 |-  ( x e. CC -> ( sqrt ` x ) e. CC )
5 4 rgen
 |-  A. x e. CC ( sqrt ` x ) e. CC
6 ffnfv
 |-  ( sqrt : CC --> CC <-> ( sqrt Fn CC /\ A. x e. CC ( sqrt ` x ) e. CC ) )
7 3 5 6 mpbir2an
 |-  sqrt : CC --> CC