Metamath Proof Explorer


Theorem sqrtf

Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Assertion sqrtf :

Proof

Step Hyp Ref Expression
1 riotaex ιy|y2=x0yiy+V
2 df-sqrt =xιy|y2=x0yiy+
3 1 2 fnmpti Fn
4 sqrtcl xx
5 4 rgen xx
6 ffnfv :Fnxx
7 3 5 6 mpbir2an :