| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphnmval.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | tcphnmval.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | tcphnmval.h |  |-  ., = ( .i ` W ) | 
						
							| 5 | 1 2 3 4 | tchnmfval |  |-  ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( W e. Grp -> ( N ` X ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` X ) ) | 
						
							| 7 |  | oveq12 |  |-  ( ( x = X /\ x = X ) -> ( x ., x ) = ( X ., X ) ) | 
						
							| 8 | 7 | anidms |  |-  ( x = X -> ( x ., x ) = ( X ., X ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( x = X -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( X ., X ) ) ) | 
						
							| 10 |  | eqid |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) | 
						
							| 11 |  | fvex |  |-  ( sqrt ` ( X ., X ) ) e. _V | 
						
							| 12 | 9 10 11 | fvmpt |  |-  ( X e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` X ) = ( sqrt ` ( X ., X ) ) ) | 
						
							| 13 | 6 12 | sylan9eq |  |-  ( ( W e. Grp /\ X e. V ) -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |