| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | cphtcphnm.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 4 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 5 | 3 4 2 | cphnmfval |  |-  ( W e. CPreHil -> N = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) | 
						
							| 6 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 7 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 8 |  | eqid |  |-  ( norm ` G ) = ( norm ` G ) | 
						
							| 9 | 1 8 3 4 | tchnmfval |  |-  ( W e. Grp -> ( norm ` G ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) | 
						
							| 10 | 6 7 9 | 3syl |  |-  ( W e. CPreHil -> ( norm ` G ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) | 
						
							| 11 | 5 10 | eqtr4d |  |-  ( W e. CPreHil -> N = ( norm ` G ) ) |