Metamath Proof Explorer


Theorem cphnmfval

Description: The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmsq.v
|- V = ( Base ` W )
nmsq.h
|- ., = ( .i ` W )
nmsq.n
|- N = ( norm ` W )
Assertion cphnmfval
|- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) )

Proof

Step Hyp Ref Expression
1 nmsq.v
 |-  V = ( Base ` W )
2 nmsq.h
 |-  ., = ( .i ` W )
3 nmsq.n
 |-  N = ( norm ` W )
4 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
5 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
6 1 2 3 4 5 iscph
 |-  ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) /\ ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) /\ N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) )
7 6 simp3bi
 |-  ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) )