| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmsq.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | nmsq.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | nmsq.n |  |-  N = ( norm ` W ) | 
						
							| 4 | 1 2 3 | cphnmfval |  |-  ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) | 
						
							| 5 | 4 | fveq1d |  |-  ( W e. CPreHil -> ( N ` A ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) ) | 
						
							| 6 |  | oveq12 |  |-  ( ( x = A /\ x = A ) -> ( x ., x ) = ( A ., A ) ) | 
						
							| 7 | 6 | anidms |  |-  ( x = A -> ( x ., x ) = ( A ., A ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( x = A -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( A ., A ) ) ) | 
						
							| 9 |  | eqid |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) | 
						
							| 10 |  | fvex |  |-  ( sqrt ` ( A ., A ) ) e. _V | 
						
							| 11 | 8 9 10 | fvmpt |  |-  ( A e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) = ( sqrt ` ( A ., A ) ) ) | 
						
							| 12 | 5 11 | sylan9eq |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |