| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmsq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
nmsq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
nmsq.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 4 |
1 2 3
|
cphnmfval |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 5 |
4
|
fveq1d |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑁 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝐴 ) ) |
| 6 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) |
| 7 |
6
|
anidms |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
| 10 |
|
fvex |
⊢ ( √ ‘ ( 𝐴 , 𝐴 ) ) ∈ V |
| 11 |
8 9 10
|
fvmpt |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| 12 |
5 11
|
sylan9eq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |